USPTO PATENT FULL-TEXT AND I[MAGE DATABASE

[ Home I Quick }[ﬁduanced]{ Pat Num[ Help }

[Uiew Cart[.n.dd to Cart}

Images
(1of1)
United States Patent 7,246,177
Anton, etal. July 17, 2007

System and method for encoding and decoding data fi

Abstract

Distributed compression of a data file can compaiseaster server module for breaking the data
file into data blocks and for transmitting the datacks to worker server modules. A first worker
server module can compress a first data block usiimgt compression algorithm, resulting in a
first compressed data block. A second worker senaule can compress the second data block
using a second compression algorithm, resultirysecond compressed data block. The first
and second compression algorithms can comprissatime algorithm or different algorithms. An
archive module can save the first and second caapdedata blocks in an archive file for
storage or for transmission over a communicatidwokk. The worker server modules also can
compress the respective data blocks using multigmepression algorithms and can choose the
highest compressed result.

Inventors: Anton; Richard N. (Jupiter, FL) Etheridge; JamesK. (Jupiter, FL) Sias; Dustin
W. (Jupiter, FL) Newland, Jr.; Robert G. (Jupiter, FL)

Assignee: Cyber Ops, LLC (Pelham, AL)
Appl. No.:10/150,333
Filed: May 17, 2002

Current U.S. Class; 709/247 ; 709/201; 710/1
Current International Class: GO6F 15/16 (20060101); GO6F 3/00 (20060101)
Field of Search: 709/201,203,223,226,227,228,247 7:

References Cited [Refer enced By]

U.S. Patent Documents



5740028 April 1998 Sugiyama et al.

5805827 September 1998 Chau et al.
5974471 October 1999 Belt

6321266 November 2001 Yokomizo et al.
2003/0059096 March 2003 Dekel et al.

Other References

The Internet Engineering Task Force Request fori@ents No. 2046, "Multipurpose
Internet Mail Extensions (MIME) Part Two: Media Teg" Nov. 1996, pp. 1-42. cited
by other .

The Internet Engineering Task Force Request for i@ents No. 2068, "Hypertext
Transfer Protocol--HTTP/1.1," Jan. 1997 (entirewoent [pp. 1-152] and Chapter 3
in particular.). cited by other .

Chou et al., "A Robust Blind Watermarking Schemsd®hon Distributed Source
Coding Principles," Int'l Multimedia Conference 20®roceedings of the 8.sup.th
ACM Int'l Conference on Multimedia, pp. 49-56. dtey other .

Zhao et al., "Broadcast System Source Codes: A Rawadigm for Data
Compression,"” Signals, Systems, & Computers, 1888ference Record of the
33.sup.rd Asilomar Conference on, vol. 1, 1999,337-341. cited by other .

Chiu et al., "Partial Video Sequence Caching SchiemgOD Systems with
Heterogeneous Clients," Industrial Electronics, EEEansactions on, vol. 45, Issue 1,
Feb. 1998, pp. 323-332. cited by other .

Jenkin et al., "A Plugin-Based Privacy Scheme farMfWide Web File

Distribution," System Sciences, 1998, Proceedinip@f31.sup.st Hawaii International
Conference on, vol. 7, 1998, pp. 621-627. citedtner .

Onufryk et al., "Consumer Devices for Networked AydISIE '97 Proceeding of the
IEEE International Symposium on, vol. 1, 1997, $827-SS32. cited by other.

Primary Examiner: Barot; Bharat
Assistant Examiner: Korobov; V.
Attorney, Agent or Firm: Smith, Gambrell & Russell

Parent Case Text

PRIORITY AND RELATED APPLICATIONS

This application claims the benefit of prioritytbS. Provisional Patent Application Ser. No.
60/291,815, entitled "Xtream Management SystertetifMay 17, 2001. The complete
disclosure of the above-identified priority apptioa is fully incorporated herein by reference.

Claims



What is claimed is:

1. A system for performing distributed compressba data file, comprising: a master server
module operable for breaking the data file intarst tlata block and a second data block and for
assigning a first compression algorithm to the filata block and a second compression
algorithm to the second data block; a first workenver module operable for receiving the first
data block from said master server module anddarpressing the first data block using the first
compression algorithm; a second worker server neodpérable for receiving the second data
block from said master server module and for cosgng the second data block using the
second compression algorithm wherein said firstsewbnd worker server modules are further
operable for transmitting the first and second casged data blocks to said master server, and
wherein said master server module is further operaln assembling the first and second
compressed data blocks in an order corresponditigetdata file.

2. The system according to claim 1, wherein thet &ind second algorithms comprise the same
algorithm.

3. The system according to claim 1, wherein the &ind second algorithms comprise different
algorithms.

4. The system according to claim 1, further compgisn archive encoding module, wherein
said master server module is further operableréorsimitting the first and second compressed
data blocks to said archive encoding module, anererh said archive encoding module is
operable for encapsulating the first and secondpcessed data blocks in an archive file.

5. The system according to claim 1, wherein saidtaraserver module is further operable for
assigning a third compression algorithm to thd fleta block, and wherein said first worker
server module is further operable for compresduegfitst data block using the third

compression algorithm and for selecting a highestpressed result from the compression of the
first data block using the first compression altjori and using the third compression algorithm.

6. The system of claim 1, wherein said master sengglule is further operable to determine
whether said first worker server module is avadadohd for transmitting the first data block to
said first worker server module in response totard@nation that the first worker server module
is available.

Description

FIELD OF THE INVENTION

The present invention relates generally to the cdesgion and decompression of data files. More
particularly, the present invention relates to sty and method for compressing data files for



storage or transmission over a communication nétwor
BACKGROUND OF THE INVENTION

Currently, many businesses conduct electronic cairen@-commerce) utilizing a

communication network such as the Internet as axmmefconnectivity to its customers and

other businesses. The customers can access assisved site to request web pages of
information from the business. The web site therdsehe requested web pages to the customers
for their viewing on a user interface. Transfertpools allow the transfer of data files between
different users and different computer applicapoograms in a distributed computing
environment. For example, the most common transfaocol used for transferring data on the
Internet is the Hypertext Transfer Protocol (HTTP).

Known transfer protocols suffer from several disattages when transferring data over a
communication network such as the Internet. Fomgte, one problem with known transfer
protocols involves the requirement to establishasse connections to retrieve each requested
file. A web page typically comprises a root docutrfda for the main web page and dependent
document files referenced by the root document Titee dependent document files can comprise
image files such as a JPEG file or a GIF file. Adoaogly, when a user requests a web page, the
transfer protocol requires a separate connectidratsfer the root document file and each
dependent document file. Each separate file cororetquires overhead on web servers. The
overhead can include additional network transfesc@ssing time, and memory usage.
Additionally, each transfer protocol connectionuiegs the exchange of protocol information for
downloading the individual files, further increagithe bandwidth required to transfer the data
files.

A conventional solution to the problem describedwabinvolves maintaining the transfer
protocol connection open to allow for multiple fiansfers during a single connection. The
connection can remain open until all of the prot@ed file data has been transferred. While that
solution can limit the impact of connection overthgadoes not reduce the transfer protocol
information required to download multiple relatded.

Another conventional solution to the connectionbtem involves storing a number of files in an
archive file and transferring the archive file ottee communication network. However, to create
the archive file, the user must manually selechelirument to include in the archive file.
Additionally, when the archive file is receivedmust be stored on a local storage medium and
manually opened to separate the files. The usemaist manually select which file to open after
the files have been separated.

Another problem with known transfer protocols inxes the transfer of only raw data. The raw
data comprises uncompressed data, which can rdguyeamounts of bandwidth to transfer it
over the Internet. A conventional solution to thadblem involves content encoding
(compression), which reduces the data file's Somtent encoding can allow individual files to
be compressed using one of several well-known cesssn methods prior to transfer.
However, conventional methods only allow transfeindividual compressed files. Accordingly,
that solution still requires the transfer protocdbrmation for the transfer of each individual



data file.

Finally, conventional transfer protocols cannotserg web page data in a specified order. The
data files are presented to the user in the ordehich they are received. Even if the data files
are transmitted in the desired order, the data &G&n arrive at the end user in a different order.
Accordingly, the data files may be presented ouhefdesired order.

Conventional compression methods also contribuieetfficiencies in compressing the data
files. For example, some conventional compressiethods allow only one compression
algorithm or sequence of compression algorithntotapress a file. More advanced
compression techniques can allow choosing onevaraemethods for compressing an entire
file or archive. However, those conventional tegeis do not allow allocation of the most
effective compression method to individual datedfibr data blocks. Accordingly, conventional
compression techniques may use an inferior comipressethod on a data type.

Accordingly, there is a need in the art for a systand method that overcome the problems
discussed above for transferring data files ovaramunication network. Specifically, a need
exists for a system and method that can alloca&tentbst efficient compression method to
different data files or data blocks of those dd&sf A need in the art also exists for an effitien
compression system and method that can compresbldaks in parallel to reduce the
compression processing time. Furthermore, a nedtkiart exists for a compression system and
method that can force the decompression ordertaftidacks or files, thereby forcing the
presentation order of the data to a user.

SUMMARY OF THE INVENTION

The present invention can reduce required bandviatdata communication by sending several
files compressed together as one streaming welvarfdrmat. The web archive format can
encapsulate many files into one file for storaggamsfer over a communication network. Thus,
the present invention can allow the transfer gfallany subset of, a web page and its dependent
files as one archive file. That aspect can requilg one exchange of transfer protocol
information, thereby reducing the overall bandwidtuired for the transfer. The present
invention also can reduce compression processimg by compressing multiple parts of a data
file in parallel (at the same time).

One aspect of the present invention can comprisgrgpression management system using one
or more master server modules and worker serveulesdh parallel to compress data blocks,
thereby decreasing encoding and decoding time ptichizing compression of the data. The
compression management system can configure aegtaté multiple master server modules
and multiple worker server modules to simultanepsblre workloads in both a dedicated and
shared resource scenario.

In one aspect of the present invention, a mastgesenodule can assign compression
algorithms to each data block for execution by onmore worker server modules. The
compression algorithms can be divided such thatomeore algorithms, or sequences of
algorithms, are assigned to each worker server tao8acordingly, processing of a data block



by one worker server module can begin before tingpbetion of a previous block by another
worker server module. The worker server modulesagaoty their assigned algorithm to the data
block and can send the results back to the masteersmodule when complete.

Another aspect of the present invention can includeate compressor. A state compressor,
when used for data compression, can referencequsglyistored data in a dynamically generated
dictionary. The continuation of the compressoigesacross block or file boundaries in an
archive file can provide for arranging documenta specific order for decompression. For
example, an advertisement can be forced to digpiay to displaying a requested web page by
making decompression of the web page dependentdgmmmpression of the advertisement.

In another aspect of the present invention, a ceerequest a web page through an Internet
browser. A proxy server module or a web server rfeodan return the web page in a web
archive format. The web archive format can encatsuhe entire web page including all
supporting files into one compressed document andransmit the entire document over one
TCP/IP connection.

These and other aspects, objects, and featurbg pfésent invention will become apparent from
the following detailed description of the exemplarngbodiments, read in conjunction with, and
reference to, the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is block diagram depicting a managemeniesydbr compressing and decompressing
data files according to an exemplary embodimenhefpresent invention.

FIG. 2 is a block diagram depicting a managemestesy for compressing and decompressing
data files according to another exemplary embodiroéthe present invention.

FIG. 3 is a flow chart depicting a method for coegsing and decompressing a local data file
according to an exemplary embodiment of the preseention.

FIG. 4 is flow chart depicting a method for comgiag a data file using distributed compression
according to an exemplary embodiment of the preseention.

FIG. 5 is a flow chart depicting a method for coegsing a data file using file scope
compression according to an exemplary embodimetiteopresent invention.

FIG. 6 is a flow chart depicting a method for detering an available worker server module
according to an exemplary embodiment of the preseention.

FIG. 7 is a flow chart depicting a method for coegsing a data block by a worker server
module according to an exemplary embodiment optiesent invention.

FIG. 8 is a flow chart depicting a method for trantéing compressed data blocks according to
an exemplary embodiment of the present invention.



FIG. 9 is a flow chart depicting a method for ldg@lompressing a data file according to an
exemplary embodiment of the present invention.

FIG. 10 is a flow chart depicting a method for depoessing a locally stored data file according
to an exemplary embodiment of the present invention

FIG. 11 is a flow chart depicting a method for coegsing and decompressing web page data
files in a communication network according to aeraplary embodiment of the present
invention.

FIG. 12 is a flow chart depicting a web server rodtfor compressing a web page data file
according to an exemplary embodiment of the preseention.

FIG. 13 is a flow chart depicting a proxy methoddompressing a web page data file according
to an exemplary embodiment of the present invention

FIG. 14 is a flow chart depicting a method for dapoessing a web archive data file according
to an exemplary embodiment of the present invention

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Although the exemplary embodiments will be desatigenerally in the context of software
modules running in a distributed computing envirenm those skilled in the art will recognize
that the present invention also can be implemeintednjunction with other program modules
for other types of computers. In a distributed catmg environment, program modules may be
physically located in different local and remotemusy storage devices. Execution of the
program modules may occur locally in a stand-alma@ner or remotely in a client/server
manner. Examples of such distributed computingrenments include local area networks of an
office, enterprise-wide computer networks, anddgiobal Internet.

The detailed description that follows is represeéegely in terms of processes and symbolic
representations of operations in a distributed agmg environment by conventional computer
components, including master servers, worker sey\peoxy servers, web servers, clients, web
browsers, memory storage devices, consoles, and dgvices. Each of those conventional
distributed computing components is accessibl@vdiammunications network, such as a wide
area network or local area network.

The processes and operations performed by the demipalude the manipulation of signals by
a client or server and the maintenance of thosetsgvithin data structures resident in one or
more of the local or remote memory storage deviash data structures impose a physical
organization upon the collection of data storedimia memory storage device and represent
specific electrical or magnetic elements. Thosel®ylia representations are the means used by
those skilled in the art of computer programming aamputer construction to effectively
convey teachings and discoveries to others skiigbde art.



The present invention also includes a computerraraghat embodies the functions described
herein and illustrated in the appended flow chaitsvever, it should be apparent that there
could be many different ways of implementing thesintion in computer programming, and the
invention should not be construed as limited to @mg set of computer program instructions.
Further, a skilled programmer would be able toevstich a computer program to implement the
disclosed invention based on the flow charts asd@ated description in the application text.
Therefore, disclosure of a particular set of pragde instructions is not considered necessary
for an adequate understanding of how to make aadhgsinvention. The inventive functionality
of the claimed computer program will be explainedniore detail in the following description in
conjunction with the Figures illustrating the pragr flow.

Referring now to the drawings, in which like numenm@present like elements, aspects of the
present invention and an exemplary operating enunent will be described.

FIG. 1 is block diagram depicting a managementesyst00 for compressing and decompressing
data files according to an exemplary embodimenhefpresent invention. The system 100 can
comprise a console 102, a client 110, and a comsjoresystem 120. The console 102 can
communicate information from the client 102 to arug he console 102 typically comprises a
graphical user interface for presenting and marmpdata in a convenient format for the user.
The console 102 also typically comprises a keybaala mouse or other devices to allow the
user to interact with the client 110. The consd@2 &lso can be operable for receiving
information from and controlling the client 110 aiheé compression system 120.

The client 110 can comprise a data file requestuteotil2 for requesting compression of
individual data files by the compression system. T2 client 110 also can comprise a web
archive request module 114 for requesting compoassi web page data files by the
compression system 120. A web page data file cenpdee a root document file of the web
page and any document referred to by the root deatifilte. Document files referred to by the
root document file are called dependent documésg.fFor example, a dependent document file
can comprise an image file for displaying on thé\page.

For the data file request module 112 and the welhivae request module 114, each module can
request compression of data files stored in a Isiabhge medium 118 of the client 110. For
example, the local storage medium can comprisedadrave, floppy disk, RAM, ROM, a
DVD/CD-ROM, etc. The user can transfer the datsfftom the storage medium 118 to the
compression system 120 with the compression redugstthe data file request module 112 or
the web page request module 114.

The compression system 120 can comprise an arehis@ding module 124. The archive
encoding module 124 can receive data file and vagje gompression requests from the data file
request module 112 and the web archive request imddd, respectively. Accordingly, the
archive encoding module 124 can receive with tlqeest one or more data files for
compression. The archive encoding module 124 ctarrdee whether to compress the data files
locally or whether to use distributed compressidmen, the archive encoding module 124 can
transfer the data files to a master server mod2ge th an exemplary embodiment, the master
server module 126 can be integral to the archieeding module 124. Alternatively, the master



server module 126 and the archive encoding mod2decan operate as separate modules
executing on different computers.

For local compression, the archive encoding mod@#can send a data file to the master server
module 126. The master server module 126 can reegig compress the data file. Then, the
master server module 126 can return the compreksgadile to the archive encoding module
124.

For distributed compression, the archive encodingute 124 can send a data file to the master
server module 126. The master server module 126etmive the data file and can break the
data files into blocks. The master server moduke dsh transmit the data blocks individually to
a worker server module 127, 128. Multiple workewee modules 127, 128 can compress
individual data blocks in parallel (at the samedjrand can return the compressed blocks to the
master server module 126. The master server md@@ean assemble the data blocks in the
proper order and can transmit the compressed tlatksito the archive encoding module 124.

In an exemplary embodiment, the worker server mexlilP7, 128 can comprise independent
computing machines operating in parallel.

Accordingly, the compression system 120 can inereampression processing speed through
parallel compression of data blocks at the same bynthe worker server modules 127, 128.
Additionally, the compression system 120 can ineede compression ratio by allowing use of
a more sophisticated compression algorithm withsh@rter compression processing time.

After receiving the compressed data blocks, theieecencoding module 124 can determine
whether to encrypt a portion, or all, of the conggexl data files. If encryption is selected, then
the archive encoding module 124 can transmit timepcessed data files to an encryption module
122 for encryption. The encryption module 122 cacrgpt the desired portions of the data files
and can return the encrypted, compressed datadilée archive encoding module 124. Then,
the archive encoding module 124 can create anwarclata file. The archive data file can
comprise the individually compressed data blockokdingly, the archive data file can
comprise compressed versions of the processedildatdf necessary, the archive encoding
module 124 can store the archive data file in eagi® medium 129.

In an exemplary embodiment, the archive data e comprise a web archive data file. The web
archive data file can comprise a compressed vedditite root document file and compressed
versions of any dependent document files associaitbdhe root document file.

The archive encoding module 124 can transmit thieiae data file to the archive decoding
module 116 of the client 110. The archive decoduglule 116 can decompress the archived
data file. The archive decoding module 116 caredtoe decompressed data file on the storage
medium 118. Accordingly, the client 110 can inceestorage space by compressing data files
stored on the storage medium 118. The archive degadodule 116 also can transmit the
decompressed data file to the console 102 for ramgien the user interface.

In an exemplary embodiment, the management sysbéncdn utilize multiple master server



modules (not shown) and worker server modules tialighto compress data blocks, thereby
decreasing encoding time and optimizing compressidhe data. The management system 100
can optimize processing power by configuring artdgrating multiple master server modules
and multiple worker server modules to share woudkdoa both a dedicated and shared resource
scenario simultaneously.

FIG. 2 is a block diagram depicting a managemestiesy 200 for compressing and
decompressing data files according to another el@smnpmbodiment of the present invention.
System 200 can comprise the console 102, a cl@ht&proxy server module 242, and a web
server module 244. The client 230 can compriselapege request module 232 and a web
browser module 234. The web page request module@232equest a web page from the proxy
server module 242 or the web server module 244.

After receiving the web page request from the wafpeprequest module 232, the proxy server
module 242 or the web server module 244 can ceeateb archive data file. In an exemplary
embodiment, the web archive data file can com@ismgle compressed file associated with a
requested web page.

In another exemplary embodiment, the web archiva filea can comprise a compressed version
of the root document file for the requested webep@glditionally, the web archive data file can
comprise a compressed version of any dependentdiduiles associated with the root
document file. For example, the root documentdda comprise the actual requested web page.
The dependent document files can comprise fileswigh, and supporting, the root document.
For instance, a dependent document file can compriamage file for displaying on the main
web page.

The proxy server module 242, or the web server o244, can transmit the web archive data
file to the web browser module 234 of the clien® 2ZBhe web browser module 234 can
decompress the web archive data file and can triatisendecompressed data to the console 102
for rendering on the user interface.

FIG. 3 is a flow chart depicting a method 300 fompressing and decompressing a local data
file according to an exemplary embodiment of thespnt invention. In step 305, the archive
encoding module 124 (FIG. 1) of the compressionesysl20 can receive a request to
communicate a local data file. For an individuaiedi@le, the request can originate from the file
request module 112 of the client 110 and can ireclute or more data files for compression. For
a web page data file, the request can originate thee web archive request module 114 and can
comprise a root document file of the web page aryddependent document files for
compression.

In step 310, the archive encoding module 124 céeraéne whether the request comprises a
web page compression request. If yes, then theadetdin branch to step 315. In step 315, the
archive encoding module 124 can determine whebeerdquest comprises a request to send a
dependent document file. For example, a user cafigtwe the web archive request module 114
to request a dependent document file with the speding root document file. Alternatively,
the user can specifically request a dependent decufite in the request from the web archive



request module 114. If the request comprises aestda send a dependent document file, then
the method can branch to step 320.

In step 320, the archive encoding module 124 centify the dependent document file. In step
325, the archive encoding module 124 can determirether to send another dependent
document file. If yes, then the method can braredkiio step 320 to identify another dependent
document file. If not, then the method can bramcktép 345 to compress the data files.

Referring back to step 315, if the archive encodirgglule 124 determines that the request does
not comprise a request to send a dependent docditeetiten the method can branch directly to
step 345.

Referring back to step 310, if the archive encodirgglule 124 determines that the request does
not comprise a web page request, then the methotreach to step 330. If the archive

encoding module 124 determines that the request mmecomprise a web page request, then the
request comprises a request to compress one orintivedual data files. In step 330, the

archive encoding module 124 can determine if iernead more than one individual data file for
compression. If yes, then the method can branskei 335.

In step 335, the archive encoding module 124 cantify the additional individual data file. The
method then can repeat step 330. If the archiveding module 124 determines in step 330 that
the request does not comprise an additional indalidata file, then the method can branch to
step 345.

In step 345, the archive encoding module 124 céeraiéne whether to use distributed
compression to compress the requested data filesy Exemplary embodiment, that
determination can be configurable by a user ottmapression system 120. Alternatively, that
determination can be based on selected paramEterexample, the parameters can comprise
compression speed or compression ratio. The aremgeding module then can select either
distributed or local compression based on whichhoimeets the selected parameters.

In step 345, if the archive encoding module 124eines to use distributed compression, then
the method can branch to step 360. In step 36@rttieve encoding module 124 can send the
data files to the master server module 126 foritlisted compression. The master server module
126 can be integral to the computer in which tloliae encoding module 124 is located.
Alternatively, the master server module 126 andatichive encoding module 124 can operate as
separate modules on different computers.

Referring back to step 345, if the archive encoditgglule 124 determines not to use distributed
compression, then the method can branch to stepli3s@p 350, the archive encoding module
124 can send the data files to the master servdul®d 26 for local compression. In that case,
the master server module 126 can be integral todh®guter in which the archive encoding
module 124 is located.

From steps 350 or 360, the method can procee@po3€5. In step 365, the archive encoding
module 124 can determine whether to encrypt thepcessed data files. If not, then the method



can branch to step 375. If yes, then the methodcamch to step 370, in which the encryption
module 122 can encrypt the compressed data filemn exemplary embodiment, the encryption
module 122 can encrypt each compressed data fdesmgle compressed data file. In another
exemplary embodiment, the encryption module 122eramypt a portion of one or more
compressed data files.

Block size within the compressed files can be \deiaAdditionally, compression and

encryption options can be configurable on a pea Baick basis. Accordingly, a user can choose
to encrypt selected portions of a data file. Suetbcive encryption can allow the encryption of
sensitive portions from an entire collection of taa file. Alternatively, selective encryption

can allow encrypting different data files with @ifént keys to provide multiple levels of access.
For example, encrypting portions of the archiveadié¢ separately can allow the creator of the
file to grant access to portions of the archivadéd¢ without compromising the security of the
entire archive data file. The method then can prdde step 375.

In an exemplary embodiment, a user can identifgitga portions of a text document. The data
blocks associated with the sensitive portions aamhbarked when saving the data file.
Accordingly, the encryption module 122 can idengfyd encrypt only the data blocks
comprising the sensitive portions.

In step 375, the archive encoding module 124 caateran archive data file. The archive data
file can comprise compressed versions of the régdeaiata files.

After creating the archive data file, the method peoceed to step 380. In step 380, the archive
encoding module 124 can store the archive dataHde example, the archive encoding module
124 can store the archive data file in the storagdium 129. Alternatively, the archive
encoding module 124 can transmit the archive dig#df the client 110. The client 110 can store
the archive data file in the storage medium 11&oidingly, the client's local data can be
compressed and stored to increase available datesp

After the compression and encryption process, tbieize data file can be stored to await a
request for decoding or for transfer to anothealmn for processing. In step 385, the archive
decoding module 116 of the client 110 can retrignearchive data file from the storage medium
118 and can decompress the archive data file fatarng on the user interface of the console
102. After being decompressed, the data file campeise the same format as the original data
file.

The management system 100 can operate as a mamdaggisiem for existing compression and
encryption methods, as well as improved compressmhencryption methods for future use.
Accordingly, the archive data file format is nopdedent on a particular compression or
encryption algorithm to perform the compressiormcryption steps described herein. The
archive data file format can utilize existing comgsion and encryption algorithms to perform
the compression and encryption steps. Additionakyy or improved compression and
encryption algorithms can be incorporated intodbmpression and encryption steps to produce
the archive data file format.



FIG. 4 is flow chart depicting a method for comgiag a data file using distributed compression
according to an exemplary embodiment of the preseention, as referred to in step 360 of

FIG. 3. In step 405, the master server module B26determine whether it has received a
connection request from the archive encoding moti2de If the master server module 126 has
not received a connection request, then step 40beaepeated. If the master server module 126
has received a connection request, then the mesestezr module 126 can accept the connection
request in step 410.

In step 415, the master server module 126 canyedaita from the archive encoding module
124. The data can comprise one or more data blesdmpression. In step 420, the master server
module 126 can identify one or more algorithmsge for compressing the received data. The
master server module 126 can obtain a list of akglalgorithms from a static configuration file
or a neural network configuration. The master senvedule 126 can determine which

algorithms to apply to the respective data filestagic configuration, selection based on
filename extension, or selection based on caladillagairistics of all or part of the file. The
calculated heuristics can comprise whether a hiato@f byte values within all or part of the

file is indicative of a primarily text document atbinary data file. Algorithms can be selected
separately for each block within the file. The noetthen can proceed to step 425.

In an exemplary embodiment, the master server a@@ssign algorithms to each data block of
the data files based on configurable compressittimgs. For example, if the compression
setting is low, then the master server module EH26assign one compression algorithm to each
data block. If the compression setting is mediumantthe master server module 126 can assign
one or two compression algorithms to each datakbléthe compression setting is high, then
the master server module 126 can assign two or ownpression algorithms to each data block.
When the master server module 126 assigns moreoti@oompression algorithm to a data
block, each algorithm can be used to compressldoi.bThen, the most compressed result can
be selected.

In step 425, the master server module 126 can hiheateceived data files into blocks. Also, in
step 425, the master server module 126 can asstle&tlgorithms determined in step 420 with
each block.

In an exemplary embodiment, the master server neath can determine algorithms for whole
data files in step 420. Then, in step 425, the enastirver module 126 can associate the
algorithms with data blocks corresponding to tlgoathms that match the data file from which
the data block originated.

In step 430, the master server module 126 cantsefast block. Then, in step 435, the master
server module 126 can determine whether to usedid@e compression to compress the selected
block. The determination whether to use file scop@mpression can be configurable. A user can
select file scope compression when a forced orgéandecompressing the data files is desired.
Additionally, file scope compression can be selgetben compression ratio is more important
than processing time, because file scope compredsies not involve distributed compression.

If the master server module 126 elects to usestitge compression, then the method can branch



to step 440. In step 440, the master server mddtfiecan compress the data block using file
scope compression. The method then can proceeedpd45. If the master server module 126
determines in step 435 not to use file scope cosspr, then the method can branch directly to
step 445.

In step 445, the master server module 126 canrdetewhether its block list is full. The block
list can comprise an organization of existing bleakd each block's associated status. If the
block list is full, then the method can branchteps447. In step 447, the master server module
126 can wait until space in the block list becomesilable. For example, space can become
available when the master server module 126 trassaméompressed block to the archive
encoding module 124. The method then can procestdpo450.

Referring back to step 445, if the master serveduteo126 determines that the block list has
available space, then the method can branch directtep 450. In step 450, the master server
module 126 can add the data block to the blocklhsstep 455, the master server module 126
can indicate a status of the data block on thekdist For example, the status can comprise
compressed, compressed using file scope compresgibnompressed, or compression in
progress. The method then can proceed to step 460.

In step 460, the master server module 126 canrdeteiwhether the data block was compressed
using file scope compression. If yes, then the pebttan branch to step 495 discussed below. If
not, then the method can branch to step 465. m4%&, the master server module 126 can
identify an available worker server module 127,.18&n, in step 470, the master server module
126 can establish a connection to the availabl&k&aerver module 127, 128. In step 475, the
master server module 126 can send the data blatksaassociated algorithm(s) to the worker
server module 127, 128.

In step 480, the worker server module 127, 128ccampress the data block and can transmit the
compressed data block to the master server mo@éleld step 485, the master server module
can receive the compressed data block from theavadrver module 127, 128. The master
server module 126 can update the status of thebitatk on the block list in step 490. For
example, the master server module 126 can updatdstia block's status from compression in
progress to compressed.

Then, the master server module 126 can assembleressed data blocks in step 495. For
example, step 495 can comprise receiving the casspdedata block and placing it in the proper
order in relation to other compressed data bloBksause the data blocks can be compressed by
multiple worker servers 127, 128 using multiplecaithms, the master server module 126 can
receive compressed data blocks from the workeesed27, 128 that are out of order. The
master server module 126 can store a compressadtldak as needed until it can be placed in
the proper order relative to other compressed lolatks.

In step 497, the master server module 126 canrtridicempressed data blocks to the archive
encoding module 124. The method then can procespo499. In step 499, the master server
module 126 can determine whether to compress and#te block. If yes, then the method can
branch back to step 430. If not, then the methadocanch to step 365 (FIG. 3).



In an exemplary embodiment, the master server neath can assign algorithms for execution
on each data block by the worker servers 127, BE@Bexample, the master server module 126
can divide the compression algorithms such thatawmeore algorithms, or sequences of
algorithms, are assigned to each worker servelldw @rocessing of one data block to begin
before the completion of a previous data block.

Once a worker server module 127, 128 completes msrjpn of a data block, the worker server
module 127, 128 can begin processing the nextldatk. Additionally, the master server
module 126 can implement a timeout function (navah) for the worker server modules 127,
128 to perform the respective assigned data bloogessing. In an exemplary embodiment, if a
worker server 127, 128 is not finished when theteraserver reaches its latency timeout for
block processing, then all of the involved workengrs can cease work on their assigned data
blocks. In that case, the master server modulecaBGransmit the most compressed version of
the data block that the worker server 127, 128chaspleted. Alternatively, if the worker server
module 127, 128 did not complete any compressigordélhm for the data block, the master
server module 126 can transmit a non-compresseibweof the data block. Accordingly, the
master server module can balance processing tiche@npression ratio to meet a specified
delivery schedule.

The archive data file format of the exemplary emiyaht can allow application of a variety of
compression algorithms to any or all portions db#a file encapsulated during the archiving
process. Accordingly, the exemplary embodimentatknw parallel processing on blocks of data
from the same file to decrease compression praugssie.

FIG. 5 is a flow chart depicting a method for coegsing a data block using file scope
compression according to an exemplary embodimetiteopresent invention, as referred to in
step 440 of FIG. 4. In step 505, the master senagtule 126 can determine a desired order for
the data blocks of the data file. For example,cg@ammer can designate a priority of files in a
web page. Then, the master server module 126 ealthe designated priorities and can order
the data blocks based on those priorities.

In step 510, the master server module 126 cantdékedirst data block from the desired order.
In step 515, the master server module 126 can asgphe first data block. The method then
can proceed to step 530 to determine whether tgpoesa another data block. If yes, then the
method can branch to step 520.

In step 520, the master server can select thedagatblock from the desired order. In step 525,
the master server module can compress the selelcielddand can make the selected block
dependent on a previous block in the desired ofides.dependent relationship between the data
blocks can be created using various methods. Faample, conventional methods reset the state
of the compression algorithm after the compressiagach block or after the compression of
each file. Accordingly, the temporary values usgdhe compression algorithm are also reset,
thereby preventing a dependent relationship betweedata blocks. In an exemplary
embodiment of the present invention, the masteresenodule 126 does not reset the state of the
compression algorithm after each block. Accordinthe temporary values used by the



compression algorithm also are not reset after bltk. Each block then can become
dependent upon a previous block, because of thedeary values used throughout the
compression process. In an alternative embodintemtnaster server module 126 does not reset
the state of the compression algorithm after edehAccordingly, files can become dependent
on decompression of another file.

By creating block or file dependencies in the cogspion process, the file scope compression
method can force the decompression order for thekblor files, respectively. Later blocks or
files in the desired order cannot be decompresstbitiie earlier blocks or files in the desired
order are decompressed. Additionally, the compoessitio of data files can be increased by
compressing individual blocks or files as a groepsus compressing individual files separately,
because the compression process is not restarteddb data file.

For example, the management system 100 can suppapplication and use of a state
compressor. A state compressor, when used forcoat@ression, can reference previously
stored data in a dynamically generated diction@hg continuation of the compressor's state
across block and/or file boundaries in an archa@a dile can allow arranging document files in a
specific order for decompression. For example,rahize data file can be created in which an
advertisement can be decompressed prior to disyglayrequested web page. Accordingly, an
advertiser can receive assurance that its advertiseis the first item displayed when viewing a
web page.

From step 525, the method can proceed to stepdi@flyssed above. If the master server module
126 determines in step 530 not to process an additblock, then the method can branch to step
445 (FIG. 4).

FIG. 6 is a flow chart depicting a method for detering an available worker server module
according to an exemplary embodiment of the preseention, as referred to in step 465 of
FIG. 4. In step 605, the master server module B26determine a status of a worker server
module 127, 128. For example, the status informaten comprise excess processing capacity
of a worker server module, a number of blocks eulyebeing processed by the worker server
module, a number of blocks capable of being praxkby the worker server module, or a
number of blocks sent for processing by the wosegver module.

Alternatively, the master server module 126 cackiesach block sent to the worker server
module 127, 128. The master server module 126calsdrack the response for each block from
the worker server module 127, 128. In that casestatus information can comprise whether the
worker server module is currently compressing albfoom the master server module 126.

From step 605, the method can proceed to stepli®sfep 610, the master server module can
determine whether to obtain status informationafoiadditional worker server module 127, 128.
If yes, then the method can branch back to step I6@6t, then the method can branch to step
615. In step 615, the master server module 126&ek@at an available worker server module
127, 128 based on the status information. The ndetien can proceed to step 470 (FIG. 4).

For example, the master server module can selemtaitable worker server module 127, 128



based on status information indicating that thekeoserver module 127, 128 has completed
processing of a data block. Alternatively, the raaserver module 126 can select an available
worker server module based on the worker servewed®7, 128 having the greatest excess
processing capacity. In another exemplary embodintle® master server module 126 can select
the first available worker server module 127, 128.

FIG. 7 is a flow chart depicting a method for corg®sing a data block by a worker server
module 127, 128 according to an exemplary embodimietihe present invention, as referred to
in step 480 of FIG. 4. In step 705, the worker semodule 127, 128 can determine whether it
has received a data block to compress. If not, thenvorker server module 127, 128 can repeat
step 705 until it receives a data block. Oncedenees a data block, then the method can branch
to step 710.

In step 710, the worker server module 127, 128read a protocol header of the data block. The
protocol header can provide various informationutibe data block. For example, the protocol
header can indicate a size of the data block,ilaéype from which the data block originated,
and the algorithm(s) associated with the data bldbk protocol header also can indicate the
version of the protocol in use to allow future ches to the protocol while providing backwards
compatibility. In step 715, the worker server ma&dl27, 128 can determine the algorithm(s)
associated with the data block. The worker servaiute 127, 128 can obtain that information
from the protocol header read in step 710. For gt@nthe protocol header can indicate one
algorithm associated with the data block. Altewelii, the protocol header can indicate a
plurality of algorithms associated with the datadil. The worker server module 127, 128 can
refer to the algorithms in later steps to comptheslata block.

In step 720, the worker server module 127, 128sedect an algorithm associated with the data
block. Then, in step 725, the worker server mod@lé, 128 can compress the data block using
the selected algorithm. In step 730, the workevesamodule 127, 128 can determine whether
the compression process yielded the highest cosipresatio for algorithms used thus far. If
yes, then the method can branch to step 735. pn7&8, the worker server module 127, 128 can
gueue the result as the highest compression fidimmethod then can proceed to step 740. If
the worker server module 127, 128 determines in 888 that the compression ratio was not the
highest, then the method can branch directly to g49€.

In step 740, the worker server module 127, 128dedermine whether an additional algorithm is
associated with the data block. If yes, then théhogkcan branch back to step 720 to compress
the data block using another algorithm. If notnthiee method can branch to step 745.

In step 745, the worker server module 127, 128ticarsmit the most compressed data block in
the queue to the master server module 126. Thesten750, the worker server module 127, 128
can determine whether to wait for an additionahddbck to compress. If yes, the method can
branch back to step 705. If not, the method candbrao step 485 (FIG. 4).

FIG. 8 is a flow chart depicting a method for tnaiiing compressed data blocks according to
an exemplary embodiment of the present inventiemeterred to in step 497 of FIG. 4. In step
805, the master server module 126 can determinéhehi has received a data block for output



to the archive encoding module 124. If not, thenrtiaster server module 126 can repeat step
805 until it receives a data block for output. éisy then the method can branch to step 810. In
step 810, the master server module 126 can detenvhiether processing of the data block is
complete. For example, the master server modulea@@&heck the data block's status in the
block list. For example, a compression in progstatus can indicate that processing of the data
block is not complete. If the processing of theadabck is not complete, then the master server
module 126 can repeat step 810 until the processiogmplete. If the master server module 126
determines that processing of the data block isptet®, then the method can branch to step 815.

In step 815, the master server module 126 can reni@vdata block from the block list. In step
820, the master server module 126 can output ahaaider and the compressed data block to the
archive encoding module 124. Then, in step 825taster server module 126 can determine
whether the data block comprises the last datkbtmcthe data file or the stream. If not, then

the method can branch back to step 805 to procedbex data block. If yes, then the method

can branch to step 830.

In step 830, the master server module 126 can walogng data blocks for the data file or
stream. Also, in step 830, the master server maflecan transmit the closing data blocks to
the archive encoding module 124. The closing dimtekb can comprise an archive header. The
archive header can provide a list of offsets toashaxations of individual data files as they are
stored in the archive data file by the archive e module 124. Then, in step 835, the master
server module 126 can close the connection witlatbleive encoding module 124. The method
then can proceed to step 499 (FIG. 4).

FIG. 9 is a flow chart depicting a method for ldgalompressing a data file according to an
exemplary embodiment of the present inventiongéesired to in step 350 of FIG. 3. In step 905,
the master server module 126 can determine whethas received a connection request from
the archive encoding module 124. If the masteregsenodule 126 has not received a connection
request, then step 905 can be repeated. If theemsestver module 126 has received a connection
request, then the master server module 126 captatt@connection request in step 910.

In step 915, the master server module 126 canveckita from the archive encoding module
124. The data can comprise one or more data blesdmpression. In step 920, the master server
module 126 can identify one or more algorithmsde for compressing the received data. The
master server module 126 can obtain a list of abkglalgorithms from a static configuration file
or a neural network configuration. The master semvedule 126 can determine which

algorithms to apply to the respective data filestafic configuration, selection based on
filename extension, or selection based on caladilageiristics of all or part of the file. The
calculated heuristics can comprise whether a hiatogf byte values within all or part of the

file is indicative of a primarily text document atbinary data file. Algorithms can be selected
separately for each block within the file.

In step 925, the master server module 126 can ltheateceived data files into blocks. Also, in
the step 925, the master server module 126 caciagsthe algorithms identified in step 920
with each block, as described above with refer¢oddG. 4.



In step 930, the master server module 126 cantsefast block. Then, in step 935, the master
server module 126 can determine whether to usedid@e compression to compress the selected
block. The determination whether to use file scop@pression can be configurable. When
locally compressing a file, file scope compressian provide an increased compression ratio.
Additionally, file scope compression does not iase processing time for local compression,
because local compression does not involve therfdsttributed compression method.

If the master server module 126 determines toilesssdope compression, then the method can
branch to step 440. In step 440, the master samedule 126 can compress the data block using
file scope compression, as described above witrenate to FIG. 5. The method then can
proceed to step 950, described below.

If the master server module 126 determines in $8&pnot to use file scope compression, then
the method can branch to step 945. In step 945ndster server module 126 can compress the
data block using the associated algorithm. In amgtary embodiment, the master server can
compress the data block as described for the weder 127, 128 described above with
reference to FIG. 7. The method then can procestefm950.

In step 950, the master server module 126 can ddse@ompressed data blocks. For example,
step 950 can comprise placing the compressed tatistin the proper order in relation to other
compressed data blocks. The master server mod6ledi2store a compressed data block as
needed until it can be placed in the proper orditive to other compressed data blocks.

In step 497, the master server module can trarmipressed data blocks to the archive
encoding module 124, as described above with ne¢ere FIG. 8. In step 960, the master server
module 126 can determine whether to compress and#éte block. If yes, then the method can
branch back to step 930. If not, then the methadocanch to step 365 (FIG. 3).

FIG. 10 is a flow chart depicting a method for depoessing a local data file according to an
exemplary embodiment of the present inventiongéesred to in step 385 of FIG. 3. In step
1005, the archive decoding module 116 (FIG. 1)retmeve an archive data file from the storage
medium 118. In step 1010, the archive decoding neotil6 can select a compressed data file
from the archive data file. In step 1015, the areldecoding module 116 can select a data block
of the selected file.

In step 1020, the archive decoding module 116 ea@rchine whether the selected data block is
encrypted. If not, then the method can branchep $030. If yes, then the method can branch to
step 1025. In step 1025, the archive decoding neotilb can decrypt the selected data block
using an appropriate decryption algorithm corresirmnto the encryption algorithm that
encrypted the data block. The method then can ptbtmestep 1030.

In step 1030, the archive decoding module 116 eaompress the selected data block using an
appropriate decompression algorithm correspondirige compression algorithm that
compressed the data block. Also, in step 1030attieive decoding module 116 can write the
decompressed data to the storage medium 118. ithstep 1035, the archive decoding module
116 can determine whether another data block resmaitine selected file. If yes, then the



method can branch back to step 1015 to decompnesisea block. If not, then the method can
branch to step 1040.

In step 1040, the archive decoding module 116 ea@rohine whether another data file remains
in the archive data file. If yes, then the methad branch back to step 1010 to decompress
another data file.

FIG. 11 is a flow chart depicting a method 1100tfansmitting web page data over a
communication network according to an exemplary @itimbent of the present invention. In step
1105, the proxy server module 242 (FIG. 2) or tled werver module 244 can receive a web
page request transmitted by the client 230. In $ig®, the method can determine whether the
server module that received the request comprigesxd server module. If yes, then the method
can branch to step 1120. In step 1120, the proxiesenodule 242 can compress the requested
data using a proxy method and can create a welvardhta file of the compressed data. The
method then can proceed to step 1125.

If the method determines in step 1110 that theeseanodule does not comprise a proxy server
module, then the method can branch to step 111be I§erver module does not comprise a
proxy server module, then the method determineggthieaserver module comprises a web server
module. Accordingly, in step 1115, the web serveduie 244 can compress the requested data
using a web server method and can create a welvamthta file of the compressed data. The
method then can proceed to step 1125.

In step 1125, the proxy server module 242 or thie sexver module 244 can transmit the web
archive data file to the web browser module 23thefclient 230. Then, in step 1130, the web
browser module 234 can decompress the receivedavebive data file for rendering as a web
page on the user interface of the console 102.

FIG. 12 is a flow chart depicting a web server mdtfor compressing data according to an
exemplary embodiment of the present inventiongéexired to in step 1115 of FIG. 11. In step
1205, the web server module 244 (FIG. 2) can pheseveb page request to determine the data
requested and header information. For exampleeiipgested data can comprise a JPEG data
file, a GIF data file, or a root document data &éifea web page. The header information can
comprise information indicating whether the cliantepts data files of the web archive format.
In step 1210, the web server module 244 can deterfmom the header information whether the
client 230 accepts data files of the web archiventd. If not, then the method can branch to step
1215. In step 1215, the web server module 244 camemtionally communicate the web page.
The method then can proceed to step 1130 (FIG. 11).

If the web server module 244 determines in stef1Rat the client accepts data of the web
archive format, then the method can branch to 5220. In step 1220, the web server module
244 can send a header to the client 230. The headendicate the web server module's 244
intent to transmit web archive-formatted data. Therstep 1225, the web server module 244 can
determine whether a web archive data file of tlypiested data exists in the web server module's
244 cache. If yes, then the method can branclefm230. In step 1230, the web server module
244 can determine whether the cached web archiegfitiais current. If yes, then the method



can branch to step 1125 (FIG. 11) to transmit Hehed web archive data file to the client 230.

If the web server module determines in step 1230ttke cached web archive data file is not
current, then the method can branch to step 128terfhg back to step 1225, if the web server
module 244 determines that a web archive datal@igs not exist in cache, then the method can
branch directly to step 1235.

In step 1235, the web server module 244 can determhether a web archive method is
enabled. The web archive method can allow creati@aweb archive comprising compressed
versions of the requested files. Enablement ofsble archive method can be configurable.
Alternatively, the web archive method can be ermhbledynamically determining if a web
archive containing dependent documents shoulddsgex based on the size of the dependent
documents. If the dependent documents are too, ldrge it can be determined not to create a
web archive. For example, the creation of a wehigecncluding overly large dependent
documents can increase the delay before the wetsbranodule 234 (FIG. 2) receives the
requested document. If the method determines ;X285 that the web archive method is not
enabled, then the method can branch to step 184@ep 1240, the web server module 244 can
create an individually compressed data file fohe@uested data file. The individually
compressed file can comprise a compressed veribie oequested file. The method then can
proceed to step 1125 (FIG. 11).

Referring back to step 1235, if the web server no@d4 determines that the web archive
method is enabled, then the method can branclepol®50. In step 1250, the web server module
244 can determine whether the requested file c@apm root document file. The requested file
comprises a root document file if it comprises amicument that refers to other dependent
documents. If the document does not comprise adoeaiment file, then the method can branch
to step 1240, described above. The method canlbtarstep 1240 because the request involves
files after an initial request for a web page. Tigal request for a web page comprises a request
for a root document file. Accordingly, if the reqtigs not for a root document file, then the web
page request comprises a request for a dependemnéat file of the web page. Thus, the
method can create the requested dependent doctileentstep 1240.

If the web server module 244 determines in stef®1R&t the document requested comprises a
root document file, then the method can proceesddp 1255. In step 1255, the web server
module 244 can compress the root document filstdp 1260, the web server module 244 can
determine whether the root document file refera tiependent document file. If yes, then the
method can branch to step 1265. In step 1265, #ieserver module 244 can retrieve the
dependent document file. Then, in step 1270, the seever module 244 can compress the
dependent document file.

In step 1275, the web server module 244 can determhether the root document refers to
another dependent document file. If yes, then ththod can branch back to step 1265 to process
another dependent document file. If not, then tle¢himd can branch to step 1280. Referring back
to step 1260, if the web server module 244 detezmihat the root document does not refer to a
dependent document file, then the method can brdimebtly to step 1280.



In step 1280, the web server module 244 can ceesitegle web archive comprising a
compressed version of the root document file amdpressed versions of the dependent
document files. In step 1285, the web server mo8ddecan cache the web archive data file for
future use. From step 1285, the method can pracestep 1125 (FIG. 11).

Accordingly, an exemplary embodiment of the pressvention can automatically retrieve the
document files that depend from the root documigntThe root document file and each
dependent document file can be compressed andgsthesd in a web archive data file for
transmission to the client 230. The web archiventtrof the exemplary embodiment can
encapsulate the entire web page including all sdjmgpfiles into one compressed document file.
The compressed document then can be transmittecdoeel CP/IP connection. Thus, the
exemplary embodiment can decrease transmissionbyniansmitting compressed versions of
the files in a single archive data file. Additiolyathe exemplary embodiment can decrease
response time by avoiding a second request frorolidet 230 for the dependent files.

For the exemplary embodiment described with refegdn FIG. 12, the web server module 244
can perform the compression steps using conventiamapression methods. Additionally, the
web server module 244 can perform the compressams sising file scope compression or
distributed compression described above with refsx¢o FIGS. 4 and 5.

In an exemplary embodiment, the web server modddecan execute an "Apache" server
module that is modified to perform as describeBI@. 12.

FIG. 13 is a flow chart depicting a proxy methoddompressing a web page data file according
to an exemplary embodiment of the present inventismreferred to in step 1120 of FIG. 11. In
step 1305, the client 230 can connect to the psexyer module 242. In step 1310, the proxy
server module 242 can read the web page requesttfr® web page request module 232 of the
client 230. In step 1315, the proxy server moddi2 @an parse the web page request to
determine the item requested. The proxy server led@iP can relay the client request to the
web server module 244 in step 1320. After receititegclient request from the proxy server
module 242, the web server module can respondels325, the proxy server module can read
and parse the web server module's 244 responserBedtie web server module's 244 response
headers can comprise information regarding whiatudeent files were requested and whether
the proxy server module's 242 cached version afesigd document files is current. The web
server module's 244 response headers also caat@diomplete uncompressed copies of the
requested document files. Alternatively, web semedule's 244 response headers can indicate a
web archive data file of the requested documees fil

In step 1330, the proxy server module 242 can nheter whether the web browser module 234
of the client 230 accepts web archive data. If tiwn the method can branch to step 1336. In
step 1336, the proxy server module 242 can conwegity communicate the web page. The
method then can proceed to step 1130 (FIG. 11).

If the proxy server module 242 determines in stgéR0lthat the client 230 accepts web archive-
formatted data, then the method can proceed to188p. In step 1335, the proxy server module
242 can determine whether the response from thesemfer is already conventionally



compressed. If yes, then the method can brandepol836 to conventionally communicate the
web page to the client 230. For example, if the s&tver response comprises a JPEG file,
typically in a highly compressed state, then thexprserver module 242 can conventionally
communicate the JPEG file to the client 230.

If the proxy server module 242 determines in stgépblthat the web server response is not
already compressed, then the method can brandbgd 837. In step 1337, the proxy server
module 242 can determine whether a web archivefilataf the requested data exists in the
proxy server module's 242 cache. Alternativelystep 1337, the proxy server module can
determine if the web server module's 244 respamdaded a web archive data file of the web
page. If yes, then the method can branch to st8p.18 step 1339, the proxy server module 242
can determine whether the existing web archive filatas current. If yes, then the method can
branch to step 1125 (FIG. 11) to transmit the cd@rehive data file to the client 230.

If the proxy server module 242 determines in stgé@Olthat the existing web archive data file is
not current, then the method can branch to stefi.1R3dferring back to step 1337, if the proxy
server module 242 determines that a web archivefdatdoes not exist, then the method can
branch directly to step 1341.

In step 1341, the proxy server module 242 can ohéer whether a web archive method is
enabled. The web archive method can allow creati@aweb archive comprising compressed
versions of the requested files. Enablement ofsble archive method can be provided as
discussed above with reference to FIG. 12. If tle¢had determines in step 1341 that the web
archive method is not enabled, then the methodrcamch to step 1345. In step 1345, the proxy
server module 242 can create an individually coisged data file for each requested file. The
individually compressed data file can comprise mjgeessed version of the requested file. The
method then can proceed to step 1125 (FIG. 11).

Referring back to step 1341, if the proxy servedale 242 determines that the web archive
method is enabled, then the method can branclepol850. In step 1350, the proxy server
module 242 can determine whether the requesteddiigorises a root document file. If the
requested document does not comprise a root doduitegrthen the method can branch to step
1345, described above, to create the requestechdepiedocument file.

If the proxy server module 242 determines in st&p0lthat the document requested comprises a
root document file, then the method can branchep $355. In step 1355, the proxy server
module 242 can compress the root document filstdp 1360, the proxy server module 242 can
determine whether the root document file refera tiependent document file. If yes, then the
method can branch to step 1365. In step 1365, rthe/server module 242 can retrieve the
dependent document file. Then, in step 1370, thgypserver module 242 can compress the
dependent document file.

In step 1375, the proxy server module 242 can oheer whether the root document file refers to
another dependent document file. If yes, then ththod can branch back to step 1365 to process
another dependent document file. If not, then tle¢himd can branch to step 1380. Referring back
to step 1360, if the proxy server module 242 deimesthat the root document file does not refer



to a dependent document file, then the method camch directly to step 1380.

In step 1380, the proxy server module 242 can er@aingle web archive comprising a
compressed version of the root document file amdpressed versions of the dependent
document files. In step 1385, the proxy server n®@d2 can cache the web archive data file
for future use. From step 1385, the method candbrémstep 1125 (FIG. 11).

Accordingly, an exemplary embodiment of the pressvention can automatically retrieve the
document files that depend from the root documigntThe root document file and each
dependent document file can be compressed andgsthesd in a web archive data file for
transmission to the client 230. The web archiventtrof the exemplary embodiment can
encapsulate the entire web page including all sdjmgpfiles into one compressed document file.
That compressed document then can be transmitesdooe TCP/IP connection. Thus, the
exemplary embodiment can decrease transmissionbyniansmitting compressed versions of
the files in a single archive data file. Additiolyathe exemplary embodiment can decrease
response time by avoiding a second request froroliduet 230 for the dependent files.

For the exemplary embodiment described with refegdn FIG. 13, the proxy server module
242 can perform the compression steps using coiveahicompression methods. Additionally,
the proxy server module 242 can perform the consprassteps using file scope compression or
distributed compression described above with refsx¢o FIGS. 4 and 5.

FIG. 14 is a flow chart depicting a method for dapoessing a web archive data file according
to an exemplary embodiment of the present invenasrreferred to in step 1130 of FIG. 11. In
step 1405, the web browser module 234 can receivecaming response from either the proxy
server module 242 or the web server module 244 r@$monse can comprise a web archive data
file or an individually compressed data file. l1estl410, the web browser module 234 can
determine if the response comprises a file in teb archive compressed format. If not, then the
method can branch to step 1415. In step 1415, giebrowser module 234 can conventionally
communicate the web page for display on the corzaie

If step 1410 determines that the response compmige=b archive data file, then the method can
branch to step 1420. In step 1420, the web bromselule 234 can read and decompress the
root document file of the response. In step 1425 web browser module 234 can determine
whether the response comprises a dependent doctifaelftyes, then the method can branch to
step 1430.

In step 1430, the web browser module 234 can reddlacompress the dependent document
file. In step 1435, the web browser module 234 stare the dependent document in cache.

Then, in step 1440, the web browser module 234letearmine whether the response comprises
another dependent document file. If yes, then ththod can branch back to step 1430 to process
another dependent document file. If not, then tle¢hiwd can branch to step 1445.

Referring back to step 1425, if the web browser oh®@34 determines that the response does
not comprise a dependent document file, then tit@adecan branch directly to step 1445. In
step 1445, the web browser module 234 can trartemilecompressed data for rendering on the



user interface of the console 102.

The present invention can be used with computetweare and software that performs the
methods and processing functions described abav&ilAbe appreciated by those skilled in the
art, the systems, methods, and procedures desdrédreth can be embodied in a programmable
computer, computer executable software, or digitalitry. The software can be stored on
computer readable media. For example, computeabd@dnedia can include a floppy disk,
RAM, ROM, hard disk, removable media, flash memangmory stick, optical media, magneto-
optical media, DVD/CD-ROM, etc. Digital circuitryan include integrated circuits, gate arrays,
building block logic, field programmable gate asdiFPGA), etc.

Although specific embodiments of the present inlenhave been described above in detail, the
description can be merely for purposes of illugtratVarious modifications of, and equivalent
steps corresponding to, the disclosed aspecteaxbmplary embodiments, in addition to those
described above, can be made by those skilleceiarthwithout departing from the spirit and
scope of the present invention defined in the oty claims, the scope of which is to be
accorded the broadest interpretation so as to gmassrsuch modifications and equivalent
structures.

* k k * %



